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Vi vary with volume in the same manner.20 The thermal 
pressure PI of the lattice is given by 

(5) 

where the thermal energy EI of the lattice is defined by 

E 1= (Li~,pl)A'+ (Li27r2vlq,2)A', ' (6) 

in which the averages of the kinetic and potential 
energies which appear must be computed from quantum 
statistical mechanics. The volumetric coefficient a of 
thermal expansion for a harmonic solid can be found 
from Gruneisen's law 

Ka='YCv/V, (7) 

ill which K is the bulk modulus (inverse compressibility) 
and Cv is the heat capacity at constant volume. This 
result follows directly from Eq. (5), on the Griineisen 
assumption that 'Y is a function only of volume. 

The thermal oscillators, whose coordinates appear 
in Eq. (3) for H, may be the virtual oscillators of the 
acoustic field as in a Debye solid (which shows a 
spectrum of frequencies), or they may be material 
oscillators, as in the Druyvesteyn-Meyering solid 
(where only one frequency appears) discussed below. 
Such harmonic solids stand in contrast to the an­
harmonic solids treated by Born and Brody,21 or by 
Hooton.22 

A. Debye Solid 

For purposes of later reference, a prefatory discussion 
of a Debye solid will be given. 

The Debye frequency liD of an isotropic monatomic 
solid is defined by 

3N= (4/3)7rV (CI-3+2Ct-3) VD3, (8) 

where N is Avogadro's number, V is the atomic volume, 
and CI and Ct are the velocities of longitudinal and 
transverse elastic waves, respectively; this definition 
corresponds to the Debye assumption of an average 
wave velocity for the two types of waves. The wave 
velocities are given for an isotropic solid by 

(9) 

if p is the density and A and J.L are the Lame parameters. 
The definition of the bulk modulus by 

K=-vap/av (10) 
yields the result 

(11) 

on the infinitesimal theory of elasticity. Use of this 
relation and the definition, 

(12) 

20 E. Griineisen, in Handbllclz der Physik (Verlag Julius Springer. 
Berlin, 1926), pp. 1-59. 

2\ M. Born and E. Brody, Z. Physik 6, 132 (1921). 
%2 D. J. Hooton, Phil. Mag. 46,422,433 (1955) . 

of Poisson's ratio cr permits one to write Eq. (8), in 
the form of I and II, as 

(13) 

where},lf is the atomic weight and SD(cr) is defined by 

[ 
3 Ji[ 9/47r Jl 

s/)= 2(1+cr) [2(1-cr)J-!+2[1-2crJ- l ' (14) 

Thermodynamic functions on the Debye model, such 
as the thermal energy El of Eq. (6), are given directly 
by standard results23 in terms of ItIlD/kT, where It 
and k are the Planck and Boltzmann constants respec­
tively, and T is the absolute temperature . 

To satisfy Gruneisen's postulate,20 that all the 
frequencies vary with volume in the same manner, it is 
essential that the Poisson ratio cr be constant; otherwise 
the frequencies of the longitudinal and transverse 
waves show different variations.3 With this assumption, 
use of Eq. (13) in Eq. (4) yields 

'YD= -t-ta InK/a InV (15) 

for the Griineisen parameter 'YD on the Debye model. 
This form for 'YD is essentially that of Lorentz; by Eg . 
(10), it is equivalent to Eq. (1) of Slater, which, one 
notes, does not contain explicitly the Lame parameters 
A and J.L characteristic of the infinitesimal theory of 
elasticity. 

It is common in the theory of elasticity of solids to 
consider only adiabatic and isothermal processes, in 
which cases a strain-energy function can be defmed24 ; 

thus, the distinction between the energy and the 
Helmholtz free energy will be ignored, in general. 
It is known that the bulk modulus for a solid can be 
taken indifferently as adiabatic or isothermal at low 
pressure,26 and the result for a solid at high pressure 
follows from the Thomas-Fermi atomic model, for 
temperatures low in the sense of the model.26 Hence, 
qualification of a partial derivative with respect to 
volume as adiabatic or isothermal will be omitted, on 
the basis above, and on the basis of Griineisen's 
assumption that the characteristic frequency is a 
function only of volume. 

B. Druyvesteyn-Meyering Solid 

In this section, the Griineisen parameter given by 
Druyvesteyn and Meyering will be obtained from an 
atomistic model. Consider a monatomic solid with a 
simple cubic lattice. Assume that each atom shares a 
bond with each of its six nearest neighbors, and with 
no neighbors more remote. Let each bond be represented 

23 J. E. Mayer and M. G. Mayer, Statistical J{echatlics (John 
Wiley and Sons, Inc., New York, 1940), pp. 243, 251. 

24 A. E. H. Love, A Treatise 01> the },IIathematical Theory of 
Elasticity (Dover Publications, New York, 1944), fourth edition, 
pp. 94, 99, 104. 

2. H. Jeffreys, Proc. Cambridge Phil. Soc. 26, 101 (1930). 
16 J. J. Gilvarry, Phys. Rev. 96, 934 (1954). 


